(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
times(x, s(y)) →+ plus(times(x, y), x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
times, plus

They will be analysed ascendingly in the following order:
plus < times

(8) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))

The following defined symbols remain to be analysed:
plus, times

They will be analysed ascendingly in the following order:
plus < times

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Induction Base:
plus(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
gen_s:0'2_0(a)

Induction Step:
plus(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) →IH
s(gen_s:0'2_0(+(a, c5_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))

The following defined symbols remain to be analysed:
times

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)

Induction Base:
times(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
0'

Induction Step:
times(gen_s:0'2_0(a), gen_s:0'2_0(+(n421_0, 1))) →RΩ(1)
plus(times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)), gen_s:0'2_0(a)) →IH
plus(gen_s:0'2_0(*(c422_0, a)), gen_s:0'2_0(a)) →LΩ(1 + a)
gen_s:0'2_0(+(a, *(n421_0, a)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)

Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)

(16) BOUNDS(n^2, INF)

(17) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)

Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)

(19) BOUNDS(n^2, INF)

(20) Obligation:

TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))

Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

(22) BOUNDS(n^1, INF)